Chapter 11

MAKING PusLic KEys:
MATH TRICKS

Easy and hard
problems
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A Lesson
in Inverses

he simple math trick used in most commercial public key cryptography is

called a modular inverse. Cryptographers use modular inverses to manufac-
ture public/private key pairs, such as those shown in Chapter 10. Here, you’ll
see how modular inverses force BlackHat to solve a difficult, time-consuming
problem but give Alice a trapdoor to an easy, quick solution.

First, let’s briefly review what led us here. Chapter 9 describes a system that
enables Alice and Bob to exchange secret keys over a public line. Alice sends
1,000,000 secret keys, and Bob selects one of them. It frustrates BlackHat be-
cause he must try about 500,000 keys before stumbling onto the one Bob se-
lected (see Figure 11-1).

Chapter 10 examines a major goal of public key cryptography: confidenti-
ality. Alice openly (that is, publicly) distributes her public key to her clients so
that each client can use the public key to encrypt a message to Alice. The mes-
sage is confidential because only Alice’s private key can decrypt a message en-
crypted with her matching public key (see Figure 11-2).

Compared with the Merkle puzzles in Chapter 9, this chapter shows a more
math-based public key system. Now, instead of distributing 1,000,000 potential
secret keys, Alice distributes a list of numbers. Her customers encode messages
by choosing and adding numbers from the list. It’s easy to choose numbers from
the list and calculate their sum, but after they’re totaled, it’s far more difficult
to figure out which numbers were added.

Many math problems are easy to solve one way and far more time-consum-
ing to solve another way. For example, without a calculator, squaring 1.234
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Figure 11-1 Alice sends 1,000,000 potential secret keys to Bob. BlackHat listens but
doesn’t know which one Bob selected.

Private
Public

Figure 11-2 In a public/private key pair, senders have the encryption key. The re-
ceiver has the decryption key.

(1.234 x 1.234 = 1.522756 ) may take a little time. But it’s easy compared with
finding the square root of 1.522756. That is a far more time-consuming
problem.

Alice’s Easy Problem

Alice publishes a newsletter, and each issue contains stock reports requested by
her clients. But her clients want only Alice to know which stocks they want to
read about. So Alice sends them a list of stock names and stock numbers (shown
in Figure 11-3) and gives them a way to communicate with her publicly so that
only she can decipher the information they send over the Internet.
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Summing specially
created stock
numbers

Definition: super-
increasing
sequence
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ALICE’'S HOT PICKS

Select and Sum Stock Numbers

Name Number
Amazon.com 1
Barnes & Noble 3
Ford Motor 5
General Motors 10
IBM 20
Microsoft 40

Figure 11-3  Alice sends her clients a list of stocks with special numbers that they can
use to encipher the information.

Each stock number identifies a particular stock. Alice’s clients sum the stock
numbers and send the total to Alice. The stock numbers are designed so that
every possible sum is unique. For example, if Bob sends 9, Alice knows that Bob
must have added 1 (Amazon.com), 3 (Barnes & Noble), and 5 (Ford). Only one
group of the stock numbers sums to 9. Similarly, only one combination sums to
4, one combination sums to 29, one combination sums to 41, and so on; each
combination of stock numbers makes a unique sum.

The uniqueness of each sum is guaranteed because Alice’s choice of stock
numbers—1, 3, 5, 10, 20, and 40—ensures it. It’s a math trick. Here’s how it
works. Note that each stock number is greater than the sum of all the preced-
ing numbers. That s, 5 is greater than 1 + 3, 10 is greater than 1 + 3 + 5, 20 is
greater than 1 + 3 + 5 + 10, and 40 is greater than 1 + 3 + 5 + 10 + 20. Any such
sequence of numbers is called a super-increasing sequence.

Alice chose a super-increasing sequence because it’s easy and quick to fig-
ure out the individual numbers that make a sum. For example, it’s easy to fig-
ure out that 53 is the sum of 40 + 10 + 3 or that 33 is the sum of 20 + 10 + 3. The
math trick is to start with the biggest number in the sequence that is also less
than the sum. That is, any sum must contain the greatest stock number that’s
less than the sum. Here’s the math trick in action.

1. Bob sends Alice 53; 53 must be made with 40. 53 — 40 = 13. 13 must be
made with 10. 13 -10=3.S053=40+10+3 or 53 =M + G + B.!

2. Casey sends Alice 33. 33 must be made with 20. 33 — 20 = 13. 13 must be
made with 10. 13 -10=3.S0 33 =20+ 10 + 3.

But because Alice’s list in Figure 11-3 is public, BlackHat can intercept the
transmission and figure out Bob’s request, as shown in Figure 11-4.

1. We refer to each stock by the first letter of its name.
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53=40 +10 + 3 B+ G+ M
3 +10 +40 =53

53=40 +10 + 3
M+ G + B

BlackHat

Figure 11-4 BlackHat intercepts Bob’s message and figures out his stock requests.

Alice’s problem is just like those that plague Merkle’s puzzles in Chapter 9.
Alice wants to solve quick and easy problems but needs to transform them into
time-consuming and difficult problems for BlackHat. To do that, Alice uses
modular inverses.

Although the simple cryptographic transformation technique we show in
the remainder of this chapter is no longer used, it’s instructive because almost
all public key cryptography depends on modular inverse transformations.? If you
don’t need or want to know how these transformations work, feel free to skip
the rest of this chapter. The rest of the book is not contingent on material in this
chapter.

Before we turn to modular inverses, let’s review some simple math you may
not have used for many years.

Grade School Math Tricks

Unless you're a mathematician (or of that nature), you may not be familiar with
the math tricks used in public key cryptography, but almost everyone who stud-
ies math learns a few math tricks.

Multiplying by 10, 100, 1,000, and so on is an easy trick we’ve all learned
(see Figure 11-5). How about multiplying a number by 11—say, 24 x 11 (see

2. More precisely, most schemes depend on the discrete logarithm problem. For our
discussion, understanding that difference is not important. For more details, see
Appendix A.
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Figure 11-6)? If you don’t know the trick, you must do traditional multiplica-
tion. But there’s a trick to use when multiplying a number by 11. First, you put
11 on top. (Most people put 11 on the bottom because it’s easier when you’re
multiplying by 11 the conventional way.) For this math trick, instead of multi-
plying by 11 you add the digits in 24, 2 + 4, to get the middle number, 6. Mul-
tiplying by 11 is much faster and easier if you know this trick.?

There are thousands of creative math tricks, and public key cryptography
uses some of them. No one wants to hide secrets with tricks (it doesn’t sound
very secure, does it?), so cryptographers call some of these math tricks by their
formal mathematical name, number theory. Number theory can sound intimidat-
ing if you’ve never studied it; but if you think “math tricks” instead, it’s more like
figuring out a puzzle than getting a Ph.D.

24
%100
2400

$ Figure 11-5 Multiplying by 100 is a simple math trick. %

it

6

Figure 11-6 Here’s a simple math trick for multiplying by 11.

More Grade School Math

All public key cryptographic systems depend on something we all learned in
grade school math: the identity property.

Simple In grade school we all learned that multiplying any number by 1 equals that
multiplicative number. It’s called the multiplicative identity property: 6 x 1 = 6; 20 x 1 = 20;
inverses 1,234,567 x 1 = 1,234,567; and so forth. There’s also an additive identity

3. 36x11=396,71x11 =781, and so on.
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Cryptographer’s
favorite math trick

property: A number plus 0 equals that number. We focus here on multiplicative
identity because public key cryptographers use it extensively.

We learned some tricks with the identity property. For example, because
8 x 1/8 equals 1, any number multiplied by 8 and then multiplied by 1/8 must
be the same as multiplying that number by 1. For example, 2 x 8 = 16, and
16 x 1/8 = 2. We are back where we started, at 2. Simple math trick! We call 1/8
and 8 inverses because when we multiply them together they equal 1 (see Fig-
ures 11-7 and 11-8.)

Although our example is not complex enough for them, cryptographers like
the math trick with inverses. Here’s why. They reason, “If I can multiply the
message by 1, the multiplicative identity property guarantees that the answer
will equal the original message. And if I can separate that multiplication into two
parts—such as 8 and 1/8—then I can disguise the original number (message)
after multiplying by one part and come back to the original number (message)
after multiplying by the second part.”

Multiplicative Inverses:
8 x 1/8 =1

3/2 x 2/3 =1

Figure 11-7 A couple of multiplicative inverses.

Multiplicative Inverses and the
Identity Property:

2 x8x1/8 =2

98,766 x 3/2 x 2/3 = 98,766

Figure 11-8 Multiplicative inverses and the identity property.
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Simple public/ For example, if Alice were the only person on Earth who knew that 1/8 is
private key pair: 8 the multiplicative inverse of 8, she could securely proclaim her public key to be
and 1/8 “multiply by 8” (see Table 11-1, first key pair). If Bob wants to send her the

message 5,000, he encryptsitto 40,000 (5,000 x 8). Only Alice knows to
multiply the ciphertext 40,000 by 1/8, so only she can quickly recover the
plaintext. A slightly more complex key pair (3/2, 2/3) is also shown in
Table 11-1.

Table 11-1 Two too-simple key pairs.

Key Pair Message Key Encrypted Key Decrypted
8, 1/8 5,000 8 40,000 1/8 5,000
3/2, 2/3 98,766 3/2 148,149 2/3 98,766

Obviously, this encryption/decryption pattern is too simplistic to be secure
in the real world of Internet- and math-savvy grade schoolers. Cryptographers
needed something more complex, and sure enough, they pored over the prob-
lem until they found a way.

Division and Remainders: Modular Math

Because most public key cryptographic systems (including RSA, the most widely
used) draw on modular math and modular math uses division, let’s review some
basics.

In grade school division, the answer is the quotient plus the remainder (see
Figure 11-9); in modular math, the answer is the remainder only. Note that
modular math uses only the whole number remainder and never fractions or
negative numbers.

Quotient + Remainder

Divisor | Dividend

Figure 11-9 The terminology of division.

103 3/15/01, 10:58 AM
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Clock math is
modular math.
Example:
10+4)mod12=2

People actually do modulo operations every day. For example, a typical
(nonmilitary) clock is modulo 12; 10 o’clock plus 4 hours is 2 o’clock. Because
you’ve worked with clock math since grade school, you automatically perform
a modular calculation: 10 + 2 gets you back to 0 (12 o’clock), and then you add
2 more. In modular math terms, it’s (10 + 4) mod 12 = 2 (see Figure 11-10).
Here’s another clock math, or modulo, example: 3 o’clock + 25 hours = 4
o’clock, or (3 + 25) mod 12 = 4.

Figure 11-11 shows the similarities between grade school division and
modular math. The chart illustrates how modular math uses division to calcu-
late the remainder. The quotient, or the number of times the divisor goes into
the dividend, isn’t a part of the answer in modular math.

Modulo is usually abbreviated mod, as in 21 mod 10 = 1 (recall that 21 di-
vided by 10 leaves a remainder of 1). The divisor is called the modulus, and the
remainder is called the residue. We’ll use the word modulus instead of divisor.
Because the words residue and remainder are so close, we’ll continue to refer to
the residue as the remainder.

If you need additional modular math examples to solidify your understand-
ing, see Figure 11-12. There’s also an additional modulo lesson in Appendix A.

Because the last step in any modular math problem always finds the remain-
der, the multiplication table, shown in Figure 11-13, doesn’t have a product
greater than 10; after multiplication, the modulo operation reduces the prod-
uct (see Figure 11-13). For example, in both grade school and modular math,
3 x 3 = 9. But grade school math and modulo have different answers for 3 x 4
because modulo 10 reduces 12 to 2. Modular math also reduces 3 x 5, 3 x 6, and
so on.

"This table also shows the kinds of modular multiplicative inverses that cryp-
tographers use to build public and private keys; for example, 7 x 3 mod 10 = 1.

10 o’clock + 4 hours = 2 o’clock
(10 +4)mod 12=2

Figure 11-10 Clock math uses modulo.
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Divisor

(modu

lus)

Quotient + Remainder
(residue)

| Dividend

Grade School Division

Dividend / divisor = quotient + remainder

Dividend / Divisor = Quotient +
13 / 10 = 1 +
23 / 10 2 +
33 / 10 = 3 +
43 / 10 4 +

Modular Arithmetic

Dividend / modulus = residue (remainder)

Modulus

Dividend (Divisor) = Quotient +
13 mod 10 = 1 +
23 mod 10 = 2 +
33 mod 10 = 3 +
43 mod 10 4 +

Answertr

Remainder

3

3
5]
3

_Answer_
Remainder

3

3
8
5]

Figure 11-11 Grade school division compared to modular math.

\,

[ same dividend (13) |
— different modulus

13mod10= 3
13mod11= 2
13mod12= 1
13mod13= 0
13 mod 14 =13
13 mod 15 =13

Different dividends )
— same modulus (10)

13mod10= 3
21mod10= 1
25mod10= 5
32mod10= 2

4,567 mod 10 =7

1,247 mod10=7

\\

Random dividends‘

and random modulus

13 mod 10 =
14 mod 10 =
14 mod 11 =
15 mod 11 =
15 mod 12 =
28 mod 12 =

AWhAWAW

If you’re not familiar or comfortable with modular math, glance at some of

these modulo examples to solidify your understanding. Because modular math

is often easier than division, all these examples can be done in your head.

Recall 13 mod 14 = 13 because:

14

0 remainder
13

13

Figure 11-12 Modular math examples.

*
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f Modulo Multiplication—
(example: Modulo 10)

If product < 10
“normal multiplication”

Example: 3|13 6 9 2 58 1 47
3 x 3 =9 (normal)

If product equals or > 10
after normal multiplication, 5/5 0 505 05 0 5
divide by 10 and use remainder

Examples:
3 x 3 =9 (same as usual) 717 4 1 8 5 2 9 6 3
3 x 4 = 12 (different)
12/10 = 1 remainder 2 8(8 6 4 2 0 8 6 4 2
—

Figure 11-13  Multiplication modulo 10. The product is always less than 10 because
modulo is about remainders and not quotients.

Modular Inverses

Multiplicative Asyou have seen, in grade school math the inverse of any whole number is easily

inverses are two computed; it’s simply 1 divided by the integer. For example, the inverse of 8 is

numbers multiplied  1/8. Modular inverse pairs—two whole numbers multiplied together that equal

together that 1—are the favorite modulo property of cryptographers. We’'ll see how Alice uses

equal 1. modular inverse pair numbers to force BlackHat to solve a time-consuming
puzzle.

Figure 11-14 compares the simple inverse of 8 and the more difficult-to-
determine inverse of 3 modulo 10. (Appendix A has more details on finding
modular inverse pairs.)

Figure 11-15 shows a simple inverse you learned in grade school as well as
a modular inverse. Multiplying any number (1, 2, 3, ... 9) by 3 x 7 modulo 10
is the same as multiplying by 1; the original number doesn’t change. If you like,
instead of separately multiplying by 3 and then 7 you can multiply by 21 (3 x 7),
as shown in Figure 11-16. The important point is that multiplying by a modular
inverse pair is just like multiplying by 1.
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—

Inverses H

Simple inverses:
(fractions OK)

8x? =1 ?2=1/8
8x1/8 =1

Modulo inverses:
(no fractions allowed)

3x?mod10=1 72=17
3x7mod 10 =1

Figure 11-14 Simple and modulo inverses.

—

Multiplying with Inverses

J—

Simple inverses:

4x8x1/8 =4

Modulo inverses:
4x3x7mod10=4

—or in separate steps—
4x3mod10=2
2x 7 mod 10 =4

Figure 11-15 Multiplying using simple and modulo inverses.

Sequence

Multiplicative Identity

x 21 Mod 10

3x7) (restored)

0 0
21 1
63 3

105 5
126 6
147 7
168 8
189 9

Figure 11-16 Multiplying by a modular inverse pair.

*
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Multiplying by a
modular inverse
pair is just like

multiplying by 1.

Real-world public
key methods use
moduli more than
200 digits lons.

"This is the modular math trick that modern-day cryptographers put to good
use. You can make modular inverse pairs that are much more difficult to find
than inverses such as 3 and 7 mod 10. Because there are an infinite number of
moduli and an infinite number of inverse pairs, cryptographers can choose a pair
that, unless you know the secret generating numbers, will be very, very difficult
to find.

Now let’s separate the process into two parts to create public and private
keys. We’ll need to use a slightly larger modular inverse pair to see how Alice
makes a public/private key pair—in particular, how Alice creates a public key
inverse of her private key.

We used 21 (3 x 7) mod 10 because the numbers are easy to work with.
When you use modulo 10, the answers are restricted to 0-9 because mod 10
means remainders after division by 10 must be less than 10. Because bigger
moduli have more inverse pairs, cryptographers prefer much bigger numbers.
For example, RSA uses moduli more than 200 digits long to make the search
even more frustrating for someone who doesn’t know the trick numbers. For-
tunately, we don’t need numbers that big to show how public/private key inverse
pairs scramble and restore messages. A modulus of 101 is sufficient to illustrate
public key math tricks and still is relatively easy to work with.

Figure 11-17 shows an example of another modular inverse pair (22 x 23
mod 101). If you multiply any number from 1 to 100 by 22 x 23 modulo 101,
the result is the original number because 22 x 23 mod 101 = 1; so it’s the same

qi 90
Nrbers (506) Mod 101
0 0 0
1 506 1
3 1,518 3
5 9,530 5
10 5,060 10
20 10,120 20
40 20,240 40

Examples:

1 x 506 = 506. 506/101=5R1

3x506=1,518. 1,518/101=15R3

Figure 11-17 A multiplicative identity using modulo.
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as multiplying by 1. (If you still find modulo a bit puzzling, see the section
“Modulo Calculations” later in this chapter.)

It’s important to see that 22 x 23 mod 101 works as a multiplicative iden-
tity just like 8 x 1/8 or 7 x 3 mod 10. Multiply any number by 506 and divide it
by 101, and the remainder is the original number. It works every time for all
numbers less than 101, the modulus.

By the way, you may have noticed that the column labeled “Original Num-
bers” in Figure 11-17 is Alice’s super-increasing sequence from the beginning
of the chapter. (We sneaked that in when you were concentrating on modular
inverse pairs.)

Using Modular Inverses to Make a Public Key

Alice keeps the Recall that Alice (or BlackHat) can quickly and easily figure out any sum made
easy numbers for from the super-increasing number sequence (1, 3, 5, 10, 20, 40) first shown in
herself and makes ~ Figure 11-3. These are the numbers she uses to solve her easy problem; it’s her
difficult numbers private key.
for BlackHat. Here’s how Alice uses her private key and modular inverses to create her
public key. She simply multiplies each of her private key numbers by 23 mod
101, shown in Figure 11-18. That transforms the private key numbers 1, 3, 5, @

10, 20, 40 into her public key 23, 69, 14, 28, 56, 11.

Private Key Public Key
(super-increasing sequence) *23 mod 101
1 23 23
3 69 69
5 115 14
10 230 28
20 460 56
40 920 11

Figure 11-18 Manufacturing a public key from a private key using modular inverses.
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Putting It All Together

Alice’s private and
public keys

Bob makes the sum
106. BlackHat can’t
quickly figure out
which numbers
Bob used.

‘ MEL_CH_1.1.pm6

Now let’s watch Bob use Alice’s public key to encipher his stock picks. Even
though BlackHat has a copy of Alice’s public key, he can’t quickly figure out
which numbers Bob chose.

Giving BlackHat a Difficult, Time-Consuming Problem

Recall the example from the beginning of this chapter, shown again and labeled
“Private Key” in Figure 11-19. The figure also includes Alice’s newly minted
public key, which Alice openly distributes. Her customers use it to request stock
reports in the next newsletter. She keeps her private key private.

In the beginning of the chapter Alice openly distributed her super-increas-
ing sequence (private key). Bob and BlackHat made copies. Bob summed A (1),
B (3), and F (5) and sent the number 9 to Alice. Although Alice easily figures out
that 9 means A, B, and F, so does BlackHat.

Now Alice openly distributes her public key and does not disclose her pri-
vate key. Now when Bob selects stock A, B, and F he adds 23 + 69 + 14 and sends
the sum 106 to Alice. Even though BlackHat has a copy of Alice’s public key,
he must spend a long time figuring out which numbers sum to 106. Because
BlackHat doesn’t know and can’t easily figure out the modular inverse pair Alice
used to make her public key, she has successfully forced BlackHat to solve a
time-consuming and difficult problem.

If you’re not convinced that BlackHat’s problem is much more difficult than
Alice’s, try to figure out which numbers sum to 103. You’ll find the answer just
before the “Review” section. How does Alice transform Bob’s message, 106, to
an easy problem?

Public Key
(openly distributed)

Private Key select and sum

Name (not disclosed) stock numbers
Amazon.com 23
Barnes & Noble 69
Ford Motor 14
General Motors 28
IBM 56
Microsoft 11

Figure 11-19 Alice’s public and private keys.
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Trapdoor to the Easy Problem

Alice knows how to transform the difficult problem (finding which public key
stock numbers sum to 106) into a much easier one (finding which private key
stock numbers sum to 9). As shown in Figure 11-20, Alice multiplies 106 by 22
mod 101 and gets 9. She then easily figures out that 9 can be made only by sum-
ming 5, 3, and 1 (which are A, B, and F).

Why does this work? Recall that the modular inverse pair is 23 x 22 mod
101. Figure 11-21 shows that each number in Alice’s public key is created by
multiplying each number of her private key by 23 mod 101. Figure 11-21 also

106 x 22 = 2,332
2,332 mod 101 =9

)

Figure 11-20 BlackHat intercepts but can’t fisure out Bob’s stock requests.

Private Key Public Key Private Key

(Column 1 (Column 2 (Column 3
x 23) mod 101) x 22) mod 101)

23 23 506

69 69 1,518
115 14 308
230 28 616
460 56 1,232
920 11 242

Figure 11-21 Alice manufactures a public key from her private key, and then, to show it's reversible, she
converts her public key back to her private key using her modulo inverse pair 23 x 22 mod 101.
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shows she can convert each public key number back to its private key by mul-
tiplying by 22 mod 10, the other number of this particular modular inverse pair.
Alice can use this method to convert public key numbers or sums of public key
numbers to corresponding private key numbers, that is, 106 converts to 9.
Again, it’s not important to remember the intricacies of this particular cryp-
tographic system. But using modular inverses to effectively multiply by 1 is the
cryptographic math trick behind most public key cryptographic systems. Appen-
dix A shows how RSA creates public/private key pairs using modulo inverses.

Knapsack Cryptography

Alice’s simplified public key system presented here is based on the first commer-
cial public key system to offer confidentiality. Called the knapsack, it was in-
vented by Ralph Merkle and Martin Hellman. The knapsack is no longer a
secure system because its design was based on a telltale mathematical pattern
that eventually gave it away. The knapsack’s weakness, discovered by Adi Shamir
(the S'in RSA), is not in the use of modular inverses but rather is in an under-
lying part of the knapsack’s private key. In fact, modular inverse pairs are used
more in RSA than in the knapsack. RSA, probably the most widely used pub-
lic key cryptographic system, is the subject of Chapter 12.

Modulo Calculations

Exercise:

As promised, all the intermediate calculations of Figure 11-18 are shown in
Figure 11-22.

Find Which Numbers Sum to 103

Convert the public key sum (103) to the private key sum (103 x 22 mod 101 =
44). Then find which private key numbers sum to 44. The number 44 is
uniquely made by summing 40, 3, and 1, which correspond to M, B, and A, re-
spectively. So 103 must be made by adding 23 (A), 69 (B), and 11 (M); see Table
11-2.

Table 11-2 After Alice converts 103 to 44, she knows that Bob picked stocks A, B, and M.

A B F G 1 M
public 23 69 14 28 56 11 23 +69 +11=103
private 1 3 5 10 20 40 1+3+40=44

112 3/15/01, 10:58 AM
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Modulo Multiplicative Identity
:J::'bﬁi *(25?2)3 Quotient & Calculations Mod 101
0 0 0 *101 = 0 0
1 506 5 *101 = 505 1
3 1,518 15 *101 = 1,515 3
5 2,530 25 *101 = 2,525 5
10 5,060 50 *101 = 5,050 10
20 10,120 100 *101 = 10,100 20
40 20,240 200 *101 = 20,200 40

The second column shows the number multiplied by 506 (=22*23),
(e.g., 1 x506 = 506).

The quotient column shows how many times that number is divisible
by 101, (e.g., 506 / 101 = 5).

The calculations columns show how the remainder is figured, (e.s.,

506 - 505 =1).

Examples:
1x506 = 506 506=5*101 + 1
3x506=1,518 1,518 =15*101 + 3

Figure 11-22 Detailed intermediate calculations of Figure 11-18. The numbers dem-
onstrate that 22 x 23 mod 101 is like multiplying by 1.

Public key cryptography, although complex, is based on the simple mathemati-
cal concept of multiplicative inverses. Multiplicative inverses are two numbers
that when multiplied together equal 1 (e.g., 8 and 1/8). In modular mathemat-
ics, two whole numbers are inverses if, when they are multiplied together, the
answer is 1 (e.g., 7 x 3 mod 10 = 1).

Cryptographers use modular inverse pairs to help create secure public and
private keys. Multiplying a message by one of the inverse pairs scrambles (en-
crypts) it, and multiplying the encrypted message by the other inverse pair re-
covers (decrypts) it. For example, suppose the message is 4. To scramble it, you
use 4 x 7 mod 10 = 8. To recover it, you use 8 x 3 mod 10 = 4.
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Almost all public key systems base their security on the difficulty of per-
forming inverse calculations. By using simple math tricks in very complex ways,
cryptographers have built public key systems that allow Alice to create and
openly distribute her public key—without compromising the security of her
private key or messages encrypted with her public key.
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