
247

Chapter 22

CRYPTOGRAPHIC GOTCHAS

This chapter describes a number of cryptographic attacks (gotchas) and ex-
plains how you can foil them.

Replay Attack
Suppose Alice sends her clients the daily interest rate and a buy/sell recommen-
dation, signed with her private key. All her clients have trusted copies of her
public key. On Monday, Alice sends 6.5% don’t buy yet. Because this message
is only signed and not confidential, BlackHat decrypts it. On Tuesday, the Fed,
in uncharacteristic mania, drops rates to 5.5%; Alice sends 5.5% buy now. Be-
cause BlackHat wants to stall Alice’s clients, he intercepts Alice’s Tuesday mes-
sage (5.5%) and substitutes Alice’s Monday message (6.5%). It’s an authentic
Alice message; BlackHat didn’t alter it. It’s just old. This attack, appropriately
called a replay attack, is one of the more easily prevented attacks.

To prevent a replay attack, Alice can timestamp or number her messages.
All the real-world systems we’ve discussed offer at least one of these options.
Interestingly, although IPsec requires the sender to number messages, the re-
ceiver is not required to use the sender’s message numbering.

Man-in-the-Middle Attack
Although public keys need not be concealed (secret), this doesn’t mean that
public keys can simply be sent (or stored) without any protection. For example,
suppose Alice e-mails Bob her public key; then BlackHat intercepts it and sub-
stitutes his own (BlackHat’s) public key. BlackHat can now read all confidential
messages Bob sends to Alice and even masquerade as Alice to Bob. This is called
a man-in-the-middle attack.

Lesson: Timestamp
or number
messages

Mel ch 22 3/15/01, 10:59 AM247

248 CHAPTER 22 • CRYPTOGRAPHIC GOTCHAS

In Figure 22-1, BlackHat intercepts Alice’s public key (23, 69, 14, …) and
substitutes his own (99, 98, 97 …). Bob uses BlackHat’s public key (thinking it
is Alice’s) to encrypt messages for Alice. To complete his subterfuge, BlackHat,
after decrypting and reading Bob’s message, encrypts it using Alice’s public key
and sends it to her (see Figure 22-2). Similarly, BlackHat can forge Alice’s sig-
nature to Bob—again, because Bob believes he has Alice’s genuine public key.
Is this too much work for BlackHat? That depends on how much he can gain
from it, doesn’t it?

Bob can verify Alice’s public key using digital certificates (see Chapters 15
through 17). But recall that digital certificates also rely on an initial trusted pub-
lic key.

Lesson: A trusted
public key means
it’s been validated
and protected.

Figure 22-1 Black Hat substitutes his own public key for Alice’s. Bob doesn’t know.

Figure 22-2 BlackHat completes the deception.

23 69 14
28 79

34

99 98 97
96 95

94

1 Bob encrypts a message
to Alice, unknowingly using
BlackHat’s public key.

2 BlackHat intercepts and
decrypts Bob’s message with
his (BlackHat’s) private key.

3 BlackHat encrypts Bob’s
message with Alice’s public
key and sends it on to Alice.

1

3

2

Mel ch 22 3/15/01, 10:59 AM248

Finding Your Keys in Memory
Here’s an attack that’s so obvious that, after you see it, you might wonder why
you didn’t figure it out yourself.

Figure 22-3 shows a snapshot of RAM bits; white is 0, and gray is 1. Can
you find the simplistic 26-bit secret key? Here’s how. Recall that cryptographic
keys are made to have as much randomness as possible; that makes them diffi-
cult to predict. It also means that a cryptographic key should contain approxi-
mately the same amount of 0’s and 1’s—in our RAM picture, the same number
of gray and white boxes.

The secret key begins four rows down on the left-hand side; about 13 white
boxes are alternated with 13 gray boxes. Of course, real secret keys don’t alter-
nate every 0 and 1 bit; that isn’t a random pattern. But that’s not the point. The
point is that a random key has statistical properties that “normal” data does not.
That gives the cryptanalyst something to look for in RAM: randomness. This
means that although random keys are hard to predict, their randomness makes
them easy to find.

To protect against this attack, a cryptographic software designer can split
the random key into smaller chunks so that its randomness doesn’t provide such
a big target.

This attack, discovered by Adi Shamir, the S in RSA, also illustrates a cryp-
tographic tenet: You can’t say that a system is totally secure because you never
know where an attack will come from.

Figure 22-3 Computer memory with a secret key.

Random keys don’t
look like normal
data. That makes
them easy to find in
memory.

Does Confidentiality Imply Integrity?
There’s a widely held, but mistaken, notion that secret key encryption (confi-
dentiality) implies that a message can’t be altered in transit without detection.
The mistaken argument goes like this: The secret key is shared only between
Alice and Bob, so BlackHat can’t change the encrypted message because

 DOES CONFIDENTIALITY IMPLY INTEGRITY? 249

Mel ch 22 3/15/01, 10:59 AM249

250 CHAPTER 22 • CRYPTOGRAPHIC GOTCHAS

anything he substitutes will decrypt to gibberish (see Figure 22-4). Let’s dis-
prove this notion with two examples.

Example 1: Substituting a Forged Key
What if the ciphertext in Figure 22-4 contained a secret or public key, that is,
something random? Although BlackHat can’t decrypt the ciphertext, he can
substitute some other random ciphertext. When Bob decrypts BlackHat’s forged
ciphertext, he’ll have no way to detect BlackHat’s forgery. BlackHat has success-
fully and covertly disrupted future communications between Alice and Bob. And
although BlackHat can’t read Alice’s communications to Bob, neither can Bob!

Figure 22-4 Alice sends Bob a secret key encrypted message.

Lesson: Always
include a signed
digest or a MAC in
digital messages.

Example 2: Cut-and-Paste Attack
Secret key encrypted messages usually break the plaintext into approximately
8-character to 16-character blocks (chunks) and encrypt each individual block
separately (see Chapter 5).1

Unfortunately, if there are enough blocks of ciphertext, BlackHat can in-
sert fraudulent blocks of ciphertext, as shown in Figure 22-5. For example,
encrypted blocks 1–9 may be genuine, but blocks x, y, and z are a forgery in-
serted by BlackHat.

Figure 22-5 BlackHat inserts forged packets into a genuine message that Bob thinks
are genuine.

1. Disregarding stream ciphers.

Perhaps secret—but not unalterable

1 2 3
9 8 71 2 3 9 8 7

Each number represents a different text block

1 2 3
4 5 6
7 8 9

1 2 3
x y z
7 8 9

Mel ch 22 3/15/01, 10:59 AM250

This attack is called a cut-and-paste attack. The details are beyond the
scope of this book, but you’ll find references in the Bibliography. Note that
sending either a MAC or a signed message digest will detect this attack.

Public Key as a Cryptanalysis Tool
When Bob encrypts and sends a message to Alice using her public key, it’s sup-
posed to be unreadable by BlackHat. But it isn’t always unreadable unless you
follow some guidelines.

Example 1: The Chosen Plaintext Attack
Suppose Alice wants Bob’s opinion on how much to bid for a shopping center;
it is worth between $8,000,000 and $12,000,000. As shown in Figure 22-6, Bob
encrypts his opinion ($10,987,654 encrypts to 12341234) and sends it to Alice.
How can BlackHat find out what Bob encrypted?

Let’s review what BlackHat knows. He knows that Bob’s opinion is between
$8,000,000 and $12,000,000; the ciphertext Bob sent Alice (12341234); and
Alice’s public key. BlackHat uses his copy of Alice’s public key to encrypt every
number between 8,000,000 and 12,000,000. One number, 10,987,654, encrypts
to 12341234, the same ciphertext sent by Bob (see Figure 22-7). BlackHat
knows that this is the opinion Bob sent Alice.

In cryptographic terminology, BlackHat has successfully mounted a chosen
plaintext attack. BlackHat chooses a set of possible plaintexts to encrypt with
Alice’s public key; one of the chosen plaintexts encrypts to the ciphertext sent
by Bob.

Figure 22-6 Bob sends Alice his encrypted opinion, and BlackHat copies the
ciphertext.

Definition: chosen
plaintext attack

 PUBLIC KEY AS A CRYPTANALYSIS TOOL 251

I’ll copy the encrypted value
and try to replicate it!

$10,987,654 $10,987,654
AliceAlice 12341234

Mel ch 22 3/15/01, 10:59 AM251

252 CHAPTER 22 • CRYPTOGRAPHIC GOTCHAS

Alice and Bob can prevent a chosen plaintext attack by adding random char-
acters, called padding, to Bob’s plaintext. This approach effectively increases the
number of possible plaintexts BlackHat must encrypt. Figure 22-8 adds five
characters of padding. Now BlackHat must encrypt 100,000 variations of
8,000,000 before trying 8,000,001.

Figure 22-7 BlackHat mounts a chosen plaintext attack.

Definition: padding

(Chosen) Plaintext

BlackHat encrypts every
possible value with Alice’s

public key.

0 8 0 0 0 0 0 0
0 8 0 0 0 0 0 1
0 8 0 0 0 0 0 2
0 8 0 0 0 0 0 3
.
1 0 9 8 7 6 5 0
1 0 9 8 7 6 5 1
1 0 9 8 7 6 5 2
1 0 9 8 7 6 5 3
1 0 9 8 7 6 5 4

Ciphertext

BlackHat gets these
enciphered texts.

1 5 4 9 6 2 4 3
6 8 1 4 6 0 0 4
3 4 7 5 0 4 1 9
5 4 8 1 2 3 4 7
.
7 1 3 9 8 1 4 2
1 1 4 7 4 2 3 4
9 8 2 8 1 3 0 0
0 1 4 7 9 1 0 0
1 2 3 4 1 2 3 4

Alice’s public

Eventually BlackHat
encrypts and gets the
same ciphertext sent
by Bob.

Figure 22-8 Adding padding. BlackHat must try many more than 4,000,000 chosen
plaintexts.

Additional padding makes BlackHat try 100,000
variations of 8,000,000 before trying 8,000,001

 Padding Bob’s Possible Plaintext

0 0 0 0 0 8 0 0 0 0 0 0
0 0 0 0 1 8 0 0 0 0 0 0
0 0 0 0 2 8 0 0 0 0 0 0
.
9 9 9 9 7 8 0 0 0 0 0 0
9 9 9 9 8 8 0 0 0 0 0 0
9 9 9 9 9 8 0 0 0 0 0 0

0 0 0 0 0 8 0 0 0 0 0 1
0 0 0 0 1 8 0 0 0 0 0 1
0 0 0 0 2 8 0 0 0 0 0 1
0 0 0 0 3 8 0 0 0 0 0 1

Mel ch 22 3/15/01, 10:59 AM252

Public Key Cryptographic Standards
RSA Securities publishes suggested standards to prevent this and other attacks
against public key cryptography. The standards, appropriately called Public Key
Cryptographic Standards (PKCS), are freely available from the RSA Web site,
www.rsa.com. This particular attack is addressed in PKCS #1, RSA Encryption
Standard, which includes a recommended padding scheme.

Example 2: The Bleichenbacher Attack
Unfortunately, as we have mentioned, nothing is provably secure.2 Even after
RSA published PKCS #1, a cryptanalyst, Daniel Bleichenbacher, discovered
another attack specifically against the padding scheme.

Although it was previously thought impossible, Bleichenbacher showed
how to figure out the entire encrypted message one bit at a time. The attack
requires Alice (the private key holder) to respond to about 1,000,000 of
BlackHat’s probing messages, but that’s not infeasible in automated systems. To
counter this attack, called a Bleichenbacher attack, RSA revised PKCS #1 pad-
ding. The attack is beyond the scope of this book; see the Bibliography for a
reference to additional papers.

BlackHat Uses Bob’s RSA Private Key
Bob keeps his RSA private key securely locked up (see Chapter 23) so that no
one else can ever use it. Well, here’s a way that BlackHat, with a little help from
an automated message response system, can trick Bob. BlackHat tricks Bob into
using his (Bob’s) RSA private key to decrypt a confidential message Alice en-
crypted with Bob’s public key. Watch closely as public/private keys are juggled
and confidentiality is breached with an ingenious BlackHat cryptographic
maneuver.

As shown in Figure 22-9 (upper left), Alice sends Bob a message. She signs
the message (encrypting it with her black private key) and then encrypts with
Bob’s white public key. In the upper right, Bob receives the message, decrypts
it with his private key, and verifies Alice’s signature with her public key. In the
bottom right, Bob returns to Alice the same plaintext Alice sent him along with

Lesson: Use only
well-trusted and
tested
cryptographic
systems.

2. Perhaps one of the more tongue-in-cheek rumors is an NSA suggestion for protecting
valuable secrets. Grind the hard disk into small pieces, lock the pieces in an expen-
sive safe, dump the safe in the middle of the ocean, and protect the site with highly
paid military guards.

BLACKHAT USES BOB’S RSA PRIVATE KEY 253

Mel ch 22 3/15/01, 10:59 AM253

254 CHAPTER 22 • CRYPTOGRAPHIC GOTCHAS

a return receipt, proving to Alice that he received her message; that is, he signs
with his private key and encrypts with Alice’s public key.

Bob’s automated message response system will do this for any signed, en-
crypted messages he receives. Figure 22-10 shows Bob’s system sending
BlackHat a similar return receipt. Don’t look for any BlackHat tricks in Figure
22-10. It’s exactly what Bob did for Alice.

Figure 22-9 Alice and Bob exchange signed, encrypted messages. Follow arrows as
Alice signs plaintext and then encrypts, and so on.

Figure 22-10 Bob’s automated response to BlackHat.

Hat

Bob BobHat

1. BlackHat signs, encrypts 2. Bob decrypts, verifies

3. Bob sends return receipt
to BlackHat; signs, encrypts

4. BlackHat decrypts, verifies

Bob Bob

Hat

BH
to
B

BH
to
B

BH
to
B

BH
to
B

Hat

Alice Bob

Bob

Bob

Bob

Alice sends to Bob

Bob sends return receipt

1. Alice signs, encrypts 2. Bob decrypts, verifies

3. Bob sends return receipt
to Alice; signs, encrypts

4. Alice decrypts, verifies

AliceAlice

Alice
A
to
B

A
to
B

A
to
B

A
to
B

Mel ch 22 3/15/01, 10:59 AM254

It’s easier to visualize RSA encryption/decryption (and sign/verify) cancel-
ing each other out if it’s shown in another way. Figure 22-11 is read from right
to left. Alice signs the plaintext message and encrypts it with Bob’s public key.
Bob decrypts with his private key and verifies Alice’s signature. It’s exactly iden-
tical to Alice and Bob’s message exchange shown at the top in Figure 22-9.

Figure 22-11 shows that Bob’s RSA private key/public keys cancel each
other out. When they are next to each other it’s like multiplying by 1. Then
Alice’s private/public keys cancel each other out, too.

Figure 22-12 adds Bob’s return receipt to Figure 22-11. After Bob recov-
ers the plaintext, his automated system makes Alice a return receipt by signing
and encrypting. Now we’re ready for BlackHat’s attack.

In Figure 22-13 BlackHat replays the original signed, encrypted message
Alice sent to Bob; it’s labeled “BlackHat resends.”

Because Bob’s automated response system believes that the message is a
genuine message from BlackHat, Bob’s system dutifully decrypts it with Bob’s
private key and verifies it with BlackHat’s public key. Bob’s private key cancels
out the public key encryption. Of course, BlackHat’s public key won’t cancel out
Alice’s private key signature, and the automated response system won’t recover
meaningful text. BlackHat hopes that the automated response system simply
makes a return receipt automatically, signs with Bob’s private key, and encrypts
with BlackHat’s public key.

Figure 22-11 Alice sends a signed, encrypted message. Bob decrypts and verifies.
This is identical to Figure 22-9 steps 1 and 2.

Figure 22-12 Bob’s return receipt is added here. This is identical to Figure 22-9 steps
1, 2, and 3.

 BLACKHAT USES BOB’S RSA PRIVATE KEY 255

Alice AliceBob Bob

Bob does Alice does

Verify Decrypt Encrypt Sign

Cancel Out

Cancel Out

A
to
B

Alice AliceBob Bob

Bob Alice

Cancel Out

Cancel Out

Bob

Bob’s return
receipt

Alice

Encrypt Sign

A
to
B

Mel ch 22 3/15/01, 10:59 AM255

256 CHAPTER 22 • CRYPTOGRAPHIC GOTCHAS

Figure 22-14 shows how BlackHat figures out the original signed, en-
crypted message Alice sent Bob. BlackHat has fooled Bob into using Bob’s pri-
vate key to cancel out Alice’s use of Bob’s public key. See Bob’s circled private/
public keys.

Although Bob applies three more cryptographic keys to the message—
verify with BlackHat’s public key, sign with Bob’s private key, and encrypt with
BlackHat’s public key—BlackHat can cancel out each one. Obviously, BlackHat
can cancel out any encryption or signing done with BlackHat’s public or private
key. The only other canceling BlackHat must do is to cancel out signing (pri-
vate key encryption); he does that with openly available public keys.

Before you start worrying, let’s consider the implications of this attack.
First, it works only with a cryptographic method whose public and private keys
are used for encryption and decryption—that is, RSA (see Chapter 12). Second,
BlackHat figured out only one message encrypted with Bob’s public key; he did
not figure out Bob’s private key.

It’s easy to protect against this attack; here are three ways. If you use RSA
for confidentiality, use a different method (e.g., DSA) for signing. Or don’t use
the same pair of RSA public/private keys for both confidentiality and signing;
instead, use one RSA key pair for signing and a second one for everything else.

Figure 22-13 Bob’s automated response system sends BlackHat a response.

Figure 22-14 BlackHat figures out the encrypted message sent by Alice.

Lesson: Never sign
(private key
encrypt) unknown
messages.

Hat AliceBob Bob

Bob
BlackHat
resends

Cancel Out

Bob

Bob’s return
receipt

Hat
Decrypt Encrypt

BlackHat replays Alice’s message to Bob
So Bob decrypts (cancels out) Alice’s encryption with Bob’s public key

A
to
B

BlackHat
resends

Hat AliceBob Bob

Bob

Cancel Out
Cancel Out

Cancel Out

Cancel Out

Bob

Bob’s return
receipt

HatAlice Hat Bob Hat

BlackHat
cancels out

Cancel Out

A
to
B

Mel ch 22 3/15/01, 10:59 AM256

Or better yet, always use a well-designed cryptographic protocol, such as SSL
v3, that never signs exactly the message sent to it. Recall, from Chapter 14, a
basic tenet of cryptographic protocol design: Never sign the exact data sent to you.

Review
Attacks against cryptographic systems are as creative as the cryptographic sys-
tems themselves. There are lessons to be learned from looking at each attack.

Replay attack: Messages should contain a timestamp or some other way to
identify them as new or old.

Man-in-the-middle attack: Trusted public keys must be validated and
protected.

Finding keys in memory: If keys can be identified, they can be attacked
when they are outside cryptographic protections.

Confidentiality does not imply integrity: Secret key encryption does not
prevent BlackHat from altering a message.

Public and private keys must be used carefully. Adhere to standards, use
separate methods and/or keys for confidentiality and signing, and never use your
private key to sign the exact message sent to you. And never sign unknown
messages.

REVIEW 257

Mel ch 22 3/15/01, 10:59 AM257

Mel ch 22 3/15/01, 10:59 AM258

